
EG UK Theory and Practice of Computer Graphics (2011)
Hamish Carr, Ian Grimstead (Editors)

Compositing Shaders in X3D

M. Kamburelis1

1Institute of Computer Science, University of Wrocław, Poland

Abstract
We present a new approach for implementing effects using the GPU shading languages. Our effects seamlessly
cooperate with each other and with the shaders used internally by the 3D application. Thus the effects are reusable,
work in various combinations and under all lighting and texture conditions. We have designed our effects to fit
naturally in 3D scene graph formats, in particular we present a number of extensions to the X3D standard. Our
extensions nicely integrate shader effects with X3D concepts like shapes, light sources and textures.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture; Computer Graphics [I.3.6]: Methodology and
Techniques—Languages, Standards

1. Introduction

X3D [Web08] is an open standard for representing interac-
tive 3D models, with many advanced graphic features.

The X3D Programmable shaders component [dCGP04]
(part of the X3D standard) defines how shaders can be as-
signed to particular shapes. Shaders are programs usually
executed on the graphic processor unit (GPU). They control
the per-vertex and per-pixel processing, for example sum-
ming the lights contribution and mixing the texture colors.
The authors can create and assign shaders to shapes, which
makes a myriad of interesting graphic effects possible in
X3D models.

The shaders designed using the standard nodes replace the
normal rendering functionality, not enhance it. This reflects
the underlying API, like OpenGL or Direct3D. The 3D li-
braries, in turn, follow the hardware idea that shader code
should be a complete and optimized program designed for
rendering a particular shape.

We argue that a different approach is needed in many sit-
uations. Authors usually would like to keep the normal ren-
dering features working and only add their own effects. The
3D renderer implementation usually already has an exten-
sive internal shaders system and the authors want to depend
on these internal shaders to do the common job.

As an example, consider this simplified lighting equation:

∑
l∈Lights

shadow(l)∗ light_color(l,material,normal(point))

Different effects want to change various parts of this equa-
tion, without touching the others. For example, the shadow
function may check a shadow map pixel, or (when shadow
map is not available) always return 1. The normal function
may take the vector straight from the geometry description,
or calculate it using a texture value (classic bump mapping).
See figure 1. The light_color function may be replaced to
use different lighting models. Sometimes it makes sense to
change these functions for all the light sources and some-
times only a specific light source should behave differently.
Our approach allows you to do everything mentioned here.

We present a system for creating effects by essentially
compositing pieces of a shader code. All the effects defined
this way effortlessly cooperate and can be combined with
each other and with application internal shaders. This makes
shader programs:

1. Much easier to create. We can jump straight into the im-
plementation of our imagined algorithm in the shader. We
are only interested in modifying the relevant shader cal-
culation parameter. We do not need to care about the rest
of the shader.

2. Much more powerful. Our effect immediately cooper-
ates with absolutely every normal feature of X3D render-
ing. This makes the implemented effect useful for a wide
range of real uses, not only for a particular situation or
a particular model (as it often happens with specialized
shader code). All X3D light sources, textures, even other
shader effects, are correctly applied.

© The Eurographics Association 2011.

M. Kamburelis / Compositing Shaders in X3D

Figure 1: Japanese shrine model with more and more effects applied: Phong shading (per-pixel lighting), bump mapping,
shadows from two lights. The model is based on http://opengameart.org/content/shrine-shinto-japan.

It is important that we still keep the full power of a cho-
sen GPU shading language. We deliberately do not try to in-
vent here a new language, or wrap existing language in some
cumbersome limitations.

2. Motivation and previous work

The most popular real-time shading languages right now are
OpenGL GLSL [Ros04], NVidia Cg and Direct 3D HLSL.
They do not provide a ready solution for connecting shaders
from independent sources. The CgFX and HLSL .fx files
encapsulate shading language code in techniques (for vari-
ous graphic card capabilities) and within a single technique
specify operations for each rendering pass. In neither case
can we simply connect multiple shader source code files and
expect the result to be a valid program.

The X3D Programmable shaders component [dCGP04]
makes the three shading languages mentioned above avail-
able to X3D authors. Complete shader code may be assigned
to specific shapes. Although it does not offer any way of
compositing shader effects, this component is still an impor-
tant base for our work. It defines how to comfortably keep
shader code inside X3D nodes. It also shows how to pass
uniform values (including textures) to the shaders.

An old solution to combine effects, used even before the
shading languages, is a multi-pass rendering. Each render-
ing pass adds or multiplies to the buffer contents, adding
a layer with desired effect. However, this is expensive —
in each pass we usually have to repeat some work, at least
transforming and clipping the geometry. It is also not flexi-
ble — we can only modify the complete result of the previ-
ous pass. Arranging shader functions in a pipeline has simi-
lar disadvantages as multi-pass rendering, except there’s no
speed penalty in this case.

Common approach for writing a flexible shader code is to
create a library of functions and allow the author to choose
and compose them in a final shader to achieve the desired
look. But this approach is very limited, as we cannot modify
a particular calculation part without replicating the algorithm
outside of this calculation. For example, if we want to scale

the light contribution by a shadow function, we will have to
also replicate the code iterating over the light sources.

Sh (http://libsh.org/, [TM04]) allows writing shader
code (that can run on GPU) directly inside a C++ program.
It allows an excellent integration between C++ code and
shaders, hiding the ugly details of passing variables between
normal code (that executes on CPU) and shader code (that
usually executes on GPU). We can use object-oriented con-
cepts to create a general shader that can later be extended,
for example by overriding virtual methods. However, this is
a solution closely coupled with C++. It’s suitable if we have
a 3D engine in C++, we want to use it in our own C++ pro-
gram and extend its shaders. Our solution is simpler, treating
shader effects as part of the 3D content and can be integrated
into a renderer regardless of its programming language. We
do not need a C++ compiler to generate a final GPU shader
and users do not need to be familiar with C++.

OGRE (http://www.ogre3d.org/), an open-source 3D
engine written in C++, has a system for adding shader ex-
tensions (see [OGR]). Its idea is similar to our system (en-
hance the built-in shaders with our own effects), however
the whole job of combining a shader is done by operating on
particular shader by C++ code. The developer has to code
the logic deciding which shaders are extended and most of
the specification about how the extension is called is done in
the C++ code. This has the nice advantage of being able to
encapsulate some fixed-function features as well, however
the whole system must be carefully controlled by the C++
code. In our approach, we allow the authors to write direct
shading language code quickly and the integration is built
inside appropriate X3D nodes.

AnySL [KRSH10] allows to integrate internal renderer
shaders with user shaders, by introducing a new shader lan-
guage.

Spark [FH11] is a recent work presenting a new language
to develop composable shaders for GPU.

At the end, we would like to mention a solution from
a completely different domain, that is surprisingly similar
to ours in some ways. Drupal (http://drupal.org/), an

© The Eurographics Association 2011.

http://libsh.org/
http://www.ogre3d.org/
http://drupal.org/

M. Kamburelis / Compositing Shaders in X3D

open-source CMS system written in PHP, has a very nice
system of modules. Each module can extend the function-
ality of the base system (or other module) by implementing
a hook, which is just a normal PHP function with a special
name and appropriate set of parameters. Modules can also
define their own hooks (for use by other modules) and in-
voke them when appropriate. This creates a system where
it’s trivially easy to define new hooks and to use existing
hooks. Many modules can implement the same hook and
cooperate without any problems. Drupal approach is quite
similar to our core idea of combining effects. Our effects are
similar to Drupal’s modules and our “plugs” are analogous
to Drupal hooks.

3. Extending the shaders with plugs

The core idea of our approach is that the base shader code
defines points where calls to user-defined functions may be
inserted. We call these places plugs, as they act like sock-
ets where logic may be added. Each plug has a name and a
given set of parameters. The effects can use special function
names, starting with PLUG_ and followed by the plug name.
These declarations will be found and the renderer will insert
appropriate calls to them from the base shader.

A trivial example of an effect that makes colors two times
brighter is below. This is a complete X3D file, so you can
save it as test.x3dv and open with any tool supporting
our extensions, like view3dscene.

#X3D V3.2 utf8
PROFILE Interchange
Shape { appearance Appearance {

material Material { }
effects Effect {
language "GLSL"
parts EffectPart {

type "FRAGMENT"
url "data:text/plain,
void PLUG_texture_apply(
inout vec4 fragment_color,
const in vec3 normal)

{
fragment_color.rgb *= 2.0;

}" } }
} geometry Sphere { } }

Our extensions to X3D are marked with the bold font in
the example above. The GLSL code inside our extensions
is marked with the italic font. The special GLSL function
name PLUG_texture_apply indicates that we use the
texture_apply plug. This particular plug is called right
after applying the textures, and is the simplest way to “just
modify the pixel color”. fragment_color is an inout
parameter, by modifying it we modify the color that will be
displayed on the screen.

A reference of all the plugs available in our im-
plementation is on http://vrmlengine.sourceforge.

net/compositing_shaders.php. For each plug, like this
PLUG_texture_apply, we define a list of parameters
and when it is called.

Many usage scenarios are possible:

1. The Effect nodes may use plug names defined inside
the renderer internal shaders. This is the most usual case.
It allows the authors to extend or override a particular
shading parameter.

2. The Effect nodes may also use the plug names de-
fined in the previous Effect nodes on the same shape.
It is trivially easy (just add a “magic” comment) to de-
fine plugs in your own shader code. This way your own
effects can be customized.

3. Inside the renderer implementation, the same approach
can be used to implement some internal effects. We have
reimplemented many internal effects of our engine, like
the fog, shadow maps (see [Kam10]) and the bump map-
ping to use our “plugs” approach. This made their im-
plementation very clean, short and nicely separated from
each other.

Actually, there are even more possibilities. We have been
talking above about the “renderer internal shaders”, but the
truth is a little more flexible. When you place a standard
shader node (like a ComposedShader node for GLSL
shaders) on the Appearance.shaders list, then it re-
places the internal renderer shaders. If you define the same
(or compatible) plugs inside your shader, then the inter-
nal renderer effects are even added to your own shader. Of
course user effects are added to your shader too. This way
even the standard X3D shader nodes become more flexible.
Note that if you do not define any plugs inside your Com-
posedShader node, it continues to function as before —
no effects will be added.

3.1. Effect node

New Effect node holds information about the source code
and uniform values specific to a given effect. The node spec-
ification below follows the style of the X3D specification
[Web08].

Effect : X3DChildNode
SFString [] language ""
Language like "GLSL", "CG", "HLSL".
This effect will be used
only when the base renderer shader
uses the same language.

SFBool [in,out] enabled TRUE
Easily turn on/off the effect.

MFNode [] parts [] # EffectPart
Source code of the effect.

A number of uniform values may also be
declared inside this node.

© The Eurographics Association 2011.

http://vrmlengine.sourceforge.net/compositing_shaders.php
http://vrmlengine.sourceforge.net/compositing_shaders.php

M. Kamburelis / Compositing Shaders in X3D

Inside the Effect node a number of uniform values may
be defined, passing any X3D value to the shader. Examples
include passing current world time or a particular texture
to the shader. Uniform values are declared exactly like de-
scribed in the standard X3D Programmable shaders compo-
nent [dCGP04].

The effect source code is split into a number of parts:

EffectPart : X3DNode, X3DUrlObject
SFString [] type "VERTEX"
Like ShaderPart.type:
allowed values are
FRAGMENT | VERTEX | GEOMETRY.

MFString [] url []
The source code, like ShaderPart.url.

Inside the effect part source code, the functions that en-
hance standard shaders behavior are recognized by names
starting with PLUG_. Of course other functions can also be
defined and used. Uniform variables can be passed to the ef-
fect, also varying variables can be passed between the vertex
and fragment parts, just like with standard shader nodes.

In a single EffectPart node, many PLUG_ func-
tions may be declared. However, all plug functions must
be declared in the appropriate effect type. For example, the
texture_apply plug cannot be used within a VERTEX
shader. If the effect requires some processing per-vertex and
some per-fragment, it is necessary to use two EffectPart
nodes, with different types. This allows to implement our
system for shading languages with separate namespaces for
vertex and fragment parts (like GLSL). A single part may
declare many variables and functions, but it must be com-
pletely contained within a given shader type.

Note that it is completely reasonable to have an Ef-
fectPart node with source code that does not define any
PLUG_xxx functions. Such EffectPart node may be
useful for defining shading language utility functions, used
by other effect parts.

For shading languages that have separate compilation
units (like the OpenGL Shading Language) the implemen-
tation may choose to place each effect part in such separate
unit. This forces the shader code to be cleaner, as you cannot
use undeclared functions and variables from other parts. It
also allows for cleaner error detection (parsing errors will be
detected inside the given unit).

3.2. Effects for particular shapes

There are various places where an Effect node may be
used. To apply an effect for a given shape appearance, it can
be placed on the new Appearance.effects list:

Appearance
MFNode [] effects [] # Effect

All the effects on this list (with suitable language) will
be used. This allows authors to define a library of indepen-
dent shader effects and then trivially pick desired effects for
each particular shape. Simply placing two effects on the Ap-
pearance.effects list makes them cooperate correctly.

Figure 2: Toon and Fresnel effects combined.

Note that all introduced nodes benefit from X3D mecha-
nism to reuse the nodes by reference (the DEF / USE key-
words). Reusing the Effect nodes is most natural and al-
lows to combine existing effects in any desired way. Reusing
the EffectPart nodes is also useful, when some effects
would like to share a particular piece of code. For example,
the same EffectPart node, with a library of useful shad-
ing language functions, may be used for many effects.

3.3. Effects for a group of nodes

The Effect node is a descendant of the abstract
X3DChildNode. As such it can be placed directly within
X3D grouping nodes like Group, Transform and at the
top level of the X3D file. Such effect will apply to all the
shapes within the given group. The scope rules follow the
X3D conventions for other nodes, like pointing device sen-
sor nodes and LocalFog.

The LocalFog example is worth emphasizing. Using
our system, an X3D viewer can implement the LocalFog
node as a prototype that expands to our Effect node. This
results in a 100% correct and easy implementation of the
standard LocalFog node.

As one of the demos, we have implemented a realistic an-
imated volumetric fog, where the fog density is stored in a
3D smooth noise texture (idea from [Per06]). In a fragment
shader, the 3D texture is sampled along the line between the
camera and pixel position in the 3D space. This makes a very
convincing effect of a dense fog. The Effect node with ap-
propriate shader code is placed at the top level of the X3D
file, so it simply works for all shapes. See figure 3.

© The Eurographics Association 2011.

M. Kamburelis / Compositing Shaders in X3D

Figure 3: Volumetric fog scene: 1) No fog; 2) No lighting; 3) Lights and fog. Note that the fog is assumed to have its own
ambient lighting, so it colors the image even in the 2) case.

3.4. Light sources effects

The nice feature of our system is that effects can be attached
to various types of objects, not just shapes. For example a
particular light source may have a shader effect assigned.
This allows to modify the contribution of a given light. For
example the spot light shape can be modified, possibly based
on some texture information (see figure 4). Or a different
lighting model may be implemented, like anisotropic Ward
or Cook-Torrance. To make this possible, the effects field
is added to every light node:

X3DLightNode
MFNode [] effects [] # Effect

Figure 4: Textured spot light with shadow.

3.5. Texture effects

Just like the light sources, also each texture node may define
its own effects:

X3DTextureNode
MFNode [] effects [] # Effect

X3DTextureNode is an ancestor for all the standard
texture nodes, like the ImageTexture. This allows to

modify any X3D texture by shader effects. A plug tex-
ture_color may be used to change the texture color, tak-
ing into account the current texture coordinates and other
information.

3.5.1. Procedural textures

A new X3D node ShaderTexture is available for creat-
ing procedural textures using the GPU shading languages.
The texture contents are not stored anywhere (not even on
GPU) and the renderer does not manage any texture re-
sources. From a GPU point of view, there is no texture. There
is only a shader function that generates colors based on some
vectors. By wrapping such function inside the Shader-
Texture node, it can be treated exactly like other textures
in the scene. In particular, texture coordinates (explicit or
generated) can be comfortably provided for the procedural
texture. Effectively, it behaves like a normal texture node,
with all the related X3D features.

ShaderTexture : X3DTextureNode
MFNode [] effects [] # Effect
SFString [] defaultTexCoord "BOUNDS2D"
["BOUNDS2D"|"BOUNDS3D"]

An effect overriding the texture_color plug should
be included, otherwise texture colors are undefined. Our
implementation sets the default texture color to pink
(RGB(1, 0, 1)), so it stands out, reminding author to over-
ride it.

The texture coordinates, or the algorithm to generate
them, can be explicitly specified, just like for any other tex-
ture in X3D. When the texture coordinates are not explicitly
given, the defaultTexCoord field determines how they
are generated. "BOUNDS2D" generates 2D texture coordi-
nates, adapting to the two largest bounding box sizes (the
3rd texture coordinate is always 0). This is most comfort-
able when the texture color depends only on the XY com-
ponents of the texture coordinate. The precise behavior of
"BOUNDS2D" follows the X3D IndexedFaceSet spec-
ification and the precise behavior of "BOUNDS3D" is de-
scribed in the Texturing3D component of the X3D specifica-
tion.

© The Eurographics Association 2011.

M. Kamburelis / Compositing Shaders in X3D

3.5.2. When to use the ShaderTexture

For textures other than the ShaderTexture, when the
texture_color plugs are called, the internal shaders
have already calculated the initial texture color by actually
sampling the texture image. This is useful if you want to
modify this color. If you’d rather ignore the normal sampled
color, and always override it with your own, consider using
the special ShaderTexture node instead. Using a nor-
mal texture node (like ImageTexture) for this would be
uncomfortable, as you would have to load a dummy texture
image, and the shaders could (depending on optimization)
waste some time on calculating a color that will be actually
ignored later.

Note that in all cases (effects at ImageTexture, at
ShaderTexture, etc.) you can always use additional tex-
tures inside the effect. Just like inside a standard Com-
posedShader, you can declare an SFNode field inside
an Effect to pass any texture node to the shader as a uni-
form value. This allows to combine any number of textures
inside an effect. The only difference between ShaderTex-
ture and other textures is what the system does automati-
cally for you, that is what color is passed to the first tex-
ture_color plug.

Figure 5: ShaderTexture doing an edge detection operation
on a normal ImageTexture.

4. Defining custom plugs

In a shader code, new plug may be defined by a magic com-
ment:

/* PLUG: name (param1, param2, ...) */

This defines a point where calls to user functions declared
as PLUG_name will be inserted. They will be called with
given parameters.

Many effects may use the same PLUG_name. Even
within a single effect, the same PLUG_name may be used
many times. All the PLUG_name functions will be uniquely
renamed to not collide with each other.

The calls will be added in the order they are specified on
the effects list. More precisely, the most local effects (at
light sources and textures) are called first, then the effects at
shape appearance, and finally the effects inside the grouping
nodes. Although, preferably, for most effects this order will
not matter.

A plug is often defined to allow modifying some pa-
rameter repeatedly (like adding or modulating the fragment
color), so one or more of the parameters are often allowed to
be handled as inout values.

The same plug name may be defined many times in
the source shader. This means that a single PLUG_xxx
function will be called many times. For example, this
is useful when the algorithm is naturally expressed as a
loop, but it had to be unrolled for shader source (for ex-
ample, to slightly tweak some loop iterations). The plug
names that are available per-light source and per-texture
are an example of this. Using the PLUG_light_scale
inside Appearance.effects, the intensity of all the
light sources on the given shape can be changed. Contrast
this with using the same PLUG_light_scale inside a
X3DLightNode.effects, where only the given light
node contribution is changed.

Currently all the plugs must be procedures, that is their
result type must be declared as void. We have been con-
sidering a possibility of functions, where part of the calcula-
tion may be replaced by a call to a plugged function. While

Figure 8: Water using our effects: 1) Per-pixel lighting and bump mapping. 2) Per-pixel lighting and reflections and refractions
(by a single environment cube map texture). 3) All effects.

© The Eurographics Association 2011.

M. Kamburelis / Compositing Shaders in X3D

not difficult to implement, this idea seems unnecessary after
many tests. Procedural plugs are easier to declare, as the call
to the plug may be simply inserted, while in case of function
it will have to replace some previous code. This also means
that using a procedural plug never replaces or removes some
existing code, which is a very nice concept to keep. We want
the effects to cooperate with each other, not to “hijack” from
each other some parts of the functionality.

New plugs can be defined inside the Effect nodes, as
well as inside the complete shaders (like standard Com-
posedShader nodes). In the first case, the plugs are only
available for the following effects of the same shape.

The advantage of using magic comments to define plugs
is that they can be ignored and a shader source remains valid.
This means that ComposedShader nodes can define cus-
tom plugs and still work (although with no extra effects)
even in X3D browsers that do not support our extensions.

4.1. Forward declarations

Suppose we have an effect X that defines a new plug. When
this plug is used by another effect Y , then an appropriate
function call is automatically inserted into the generated
shader. In the middle of the source code of effect X , a func-
tion defined in effect Y has to be called. This is the sim-
plest implementation of our plugs. Additionally, a forward
or external declaration of the called function may need to
be inserted into the effect X . That is because Y may be in a
separate compilation unit (in case of GLSL), or just defined
lower in the code. In simple cases, such forward or external
declarations can be inserted right at the beginning of effect X
code.

Some shading language directives are required to be
placed before all normal declarations. For example, in case
of the OpenGL shading language, the #version as well
as some #extension directives must occur at the begin-
ning of the shader code. To handle such cases, another magic
comment /* PLUG-DECLARATIONS */ is available. If
present, it signifies a place where forward or external decla-
rations should be inserted.

4.2. Invalid shader code

The behavior is defined only if the provided shading lan-
guage code is a correct, self-contained code. The errors (like
unterminated block) may only be detected after the complete
shader is determined and compiled by the GPU. It should be
noted that for shading languages with separate compilation
units, the parsing errors can be at least reported always for
the correct code piece (effect part).

The application does not need to parse the shader code
at any point. Only a trivial text search in the code is neces-
sary to detect the magic plug function names and comments.

5. Examples

Effects may define and use their own uniform variables, in-
cluding textures, just like the standard shader nodes. So we
can combine any number of textures inside an effect. As an
example we wrote a simple effect that mixes a couple of tex-
tures based on a terrain height (see figure 6). We could also
pass any other uniform value to the effect, for example pass-
ing the current time from an X3D TimeSensor allows to
make animated effects.

Figure 6: ElevationGrid with 3 textures mixed inside the
shader.

We can wrap 2D or 3D noise inside a ShaderTexture
(see figure 7). A texture node like NoiseTexture from
InstantReality [Ins] may be implemented on GPU by a sim-
ple prototype using the ShaderTexture.

Figure 7: 3D and 2D smooth noise on GPU, wrapped in a
ShaderTexture.

Water is very nice to implement with the help of our ef-
fects, as a proper water simulation is naturally a combination
of a couple effects. To simulate waves we want to vary ver-
tex heights, or vary per-fragment normal vectors (for best
results, we want to do both things). We also want to sim-
ulate the fact that water has reflections and is transparent.

© The Eurographics Association 2011.

M. Kamburelis / Compositing Shaders in X3D

We have implemented a nice water using this approach, with
(initially) two independent effect nodes. See figure 8. Then
we have tested two alternative approaches for normal gen-
eration (take from pre-recorded series of normal-maps, or
calculate from a smooth 3D noise). They both generate nor-
mal vectors in the tangent space, overriding a plug defined
by yet another effect that transforms normals into the eye
space. This way we have extracted all the common logic into
a separate effect, making it clear where the alternative nor-
mal generation methods differ and what they have in com-
mon.

We also have plugs to change the geometry in object
space. Since the transformation is done on GPU, there’s
practically no speed penalty for animating thousands of
flowers in our test scene. See figure 9.

Figure 9: Flowers bending under the wind, transformed on
GPU in object space.

We would like to emphasize that all the effects demon-
strated here are theoretically already possible to implement
using the standard X3D Programmable shaders component
[dCGP04]. However, such implementation would be ex-
tremely cumbersome. You would first have to implement all
the necessary multi-texturing, lighting, shadows, and other
rendering features in a shader code. This is a large work if
we consider all the X3D rendering options. Also note that a
shader should remain optimized for a particular setting. The
only manageable way to do this, that would work for all the
lighting and texturing conditions, is to write a shader gen-
erator program. Which is actually exactly what our effects
already do for you — the implementation of our effects con-
structs and links the appropriate shader code, gathering the
information from all the nodes that affect the given shape.
The information is nicely integrated with X3D nodes, effects
are specified at suitable nodes, and their uniform values and
attributes are integrated with X3D fields.

Many complete example models using our effects
are referenced from our page on http://vrmlengine.
sourceforge.net/compositing_shaders.php. You can
open these examples using any of our engine tools, like
view3dscene.

6. Implementation notes

We have implemented all the X3D extensions described in
this paper for the OpenGL Shading Language (GLSL). How-
ever, we have designed our extensions to be applicable to
other shading languages as well (like Cg or HLSL) and we
believe they can be handled in a similar fashion. In particu-
lar, we have tested that the separate compilation units con-
cept of GLSL, while very useful, is not necessary for proper
implementation of our effects.

7. Conclusion

We show a new approach for developing effects using the
GPU shading languages. It allows to combine various shader
effects with each other and with application internal shaders.
Our approach is relatively easy to implement and allows the
authors to directly use the existing GPU shading languages.
We propose a number of extensions to the X3D, an open
standard for 3D data, to make our effects available for 3D
content authors. We have implemented our approach for the
GLSL shading language.

References
[dCGP04] DE CARVALHO G. N. M., GILL T., PARISI T.: X3D

programmable shaders. In Proceedings of the ninth international
conference on 3D Web technology (New York, NY, USA, 2004),
Web3D ’04, ACM, pp. 99–108. 1, 2, 4, 8

[FH11] FOLEY T., HANRAHAN P.: Spark: Modular, Composable
Shaders for Graphics Hardware. In Proceedings of SIGGRAPH
2011 (2011), ACM. 2

[Ins] INSTANT REALITY: NoiseTexture. http:
//doc.instantreality.org/documentation/nodetype/
NoiseTexture/. 7

[Kam10] KAMBURELIS M.: Shadow maps and projective textur-
ing in X3D. In Proceedings of the 15th International Conference
on Web 3D Technology (New York, NY, USA, 2010), Web3D ’10,
ACM, pp. 17–26. 3

[KRSH10] KARRENBERG R., RUBINSTEIN D., SLUSALLEK P.,
HACK S.: AnySL: efficient and portable shading for ray tracing.
In Proceedings of the Conference on High Performance Graphics
(2010), HPG ’10, Eurographics Association, pp. 97–105. 2

[OGR] OGRE: OGRE Wiki - RT Shader System.
http://www.ogre3d.org/tikiwiki/RT+Shader+System&
structure=Development. 2

[Per06] PERSSON E.: Volumetric Fogging 2. http://www.
humus.name/index.php?page=3D&ID=70, 2006. 4

[Ros04] ROST R. J.: OpenGL Shading Language. Addison-
Wesley, 2004. 2

[TM04] TOIT S. D., MCCOOL M.: Metaprogramming GPUs
with Sh. A K Peters/CRC Press, 2004. 2

[Web08] WEB3D CONSORTIUM: Extensible 3D (X3D) Graphics
Standard. ISO/IEC 19775-1.2:2008; see http://web3d.org/
x3d/specifications/, 2008. 1, 3

© The Eurographics Association 2011.

http://vrmlengine.sourceforge.net/compositing_shaders.php
http://vrmlengine.sourceforge.net/compositing_shaders.php

